Conservation laws of semidiscrete canonical Hamiltonian equations
نویسنده
چکیده
There are many evolution partial differential equations which can be cast into Hamiltonian form. Conservation laws of these equations are related to one–parameter Hamiltonian symmetries admitted by the PDEs [1]. The same result holds for semidiscrete Hamiltonian equations [2]. In this paper we consider semidiscrete canonical Hamiltonian equations. Using symmetries, we find conservation laws for the semidiscretized nonlinear wave equation and Schrödinger equation.
منابع مشابه
Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملTowards an Analytical Mechanics of Dissipative Materials
A Lagrangian-Hamiltonian variational formulation is proposed for the thermoelasticity of heat conductors and its generalization to anelasticity described by means of internal-state variablesby using a gauge-theoretical technique (introduction of an additional variable of state the gradient of thermacy that renders the system apparently Hamiltonian). Projecting the equations resulting from the E...
متن کاملSemidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations
We introduce new Godunov-type semidiscrete central schemes for hyperbolic systems of conservation laws and Hamilton–Jacobi equations. The schemes are based on the use of more precise information about the local speeds of propagation and can be viewed as a generalization of the schemes from [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 241–282; A. Kurganov and D. Levy, SIAM J. Sc...
متن کاملPort-Hamiltonian formulation of shallow water equations with coriolis force and topography∗
Port based network modeling of complex lumped parameter physical systems naturally leads to a generalized Hamiltonian formulation of its dynamics. The resulting class of open dynamical systems are called “Port-Hamiltonian systems” [12] which are defined using a Dirac structure, the Hamiltonian and dissipative elements. This formulation has been successfully extended to classes of distributed pa...
متن کاملNonoscillatory Central Schemes for Hyperbolic Systems of Conservation Laws in Three-Space Dimensions
We extend a family of high-resolution, semidiscrete central schemes for hyperbolic systems of conservation laws to three-space dimensions. Details of the schemes, their implementation, and properties are presented together with results from several prototypical applications of hyperbolic conservation laws including a nonlinear scalar equation, the Euler equations of gas dynamics, and the ideal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000